

UTKAL INSTITUTE OF ENGINEERING & TECHNOLOGY

DISCIPLINE:	SEMESTER:			
Electrical Engg.	3 rd Sem	NAME OF THE TEACHING FACULTY:Er. Kalakar Mohanty		
SUBJECT:		Semester From Date:15/09/2022		
Circuit and Network Theory	No of Days/Per week class allotted: 5 Class P/W(75)	To Date:22/12/2022		
		No. Of Weeks: 15		
WEEK	CLASS DAY	THEORY TOPICS	REMARKS	
	1 st	Magnetic cercuits : Introduction	Date	Dean/Principal
1 st	2 nd	Magnetizing force, Intensity, MMF, flux and their relations		
	3 rd	Permeability, reluctance and permeance		
	4 th	Analogy between electric and Magnetic Circuits		
	5 th	B-H Curve		
	1 st	Series & parallel magnetic circuit		
	2 nd	Hysteresis loop		
2 nd	3 rd	Self Inductance and Mutual Inductance		
	4 th	Conductively coupled circuit and mutual impedance		
	5 th	Dot convention		
	1 st	Assignment		
	2 nd	Coefficient of coupling, Series and parallel connection of coupled inductors.		
3 rd	3 rd	Solve Numerical problem		
	4 th	Star to delta & delta to star Transformation		
	5 th			
		Doubt Clear Class		
	1 st	Assignment		
	2 nd	Super position Theorem		
4 th	3 rd	Solve Numerical problem		

	4 th	Assignment question Discussion	
	5 th		
		Thevenin's Theorem	
	1 st	Norton's Theorem	
	2^{nd}	Maximum power Transfer Theorem.	
	3 rd	Solve Numerical problem	
5 th	d		
5	4 th		
-		A.C. through R-L, R-C & R-L-C Circuit	
	$5^{ m th}$	Solution of problems of A.C. through R-L, R-C & R-L-	
	J	C series Circuit by complex algebra method.	
	1 st	Assignment	
_	•		
	$2^{\rm nd}$	Assignment question Discussion	
	3 rd	Doubt clear class	
6 th	-		
6			
	$4^{ m th}$		
		Solution of problems of A.C. through R-L, R-C & R-L-	
		C parallel & Composite Circuits	
	5 th	Power factor & power triangle.	
		Deduce expression for active, reactive, apparent	
	1 st	powe	
	2^{nd}	Derive the resonant frequency of series resonance	
_		and parallel resonance circuit Define Bandwidth, Selectivity & Q-factor in series	
7^{th}	3 rd	circuit.	
	4 th	Solve Numerical problem	
		Botte Numerical problem	
	5 th	Concept of poly phase system and phase sequency	
		Relation between phase and line quantities in	
	1 st	star & delta connection	
8 th	$2^{\rm nd}$	Power equation in 3-phase balanced circuit.	
	3 rd	Assignment	
<u> </u>	4 th	Class test	
-	5 th	Solve Numerical problem	
9 th		Measurment of 3-phase power by two wattmeter	
	1 st	method.	
	2 nd	Solve Numerical problem	
	$3^{\rm rd}$	Steady state & transient state response	
	4 th	Assignment question Discussion	
	5 th	Response to R-L,R-C & RLC circuit under DC	
		condition	
	1 st	Doubt Clear Class	

I	2 nd	Solve Numerical problem	
10 th	3 rd	Solve Numerical problem	
	4 th	Solve Numerical problem	
	5 th	Open circuit impedance (z) parameters	
	1 st	Short circuit admittance (y) parameters	
	2 nd	Assignment	
11 th	3 rd	Transmission (ABCD) parameters	
	4 th	Hybrid (h) parameters	
	5 th	Hybrid (h) parameters	
	1 st	Inter relationships of different parameters	
	2 nd	T and π representation	
12 th	3 rd	Solve Numerical problem	
	4 th	Define filter	
	5 th	Classification of pass Band, stop Band and cut-off frequency	
	1 st	Doubt Clear Class	
<u> </u>		Class test	
_	2 nd	Classification of filters.	
13 th	3 rd	Revision	
	4 th	Constant – K low pass filter	
	5 th	Sample Paper Question Discussion	
	1 st	Constant – K high pass filter.	
	2 nd	Assignment	
14 th	3 rd	Solve Numerical problem	
	4 th	Solve Numerical problem	
	5 th	Solve Numerical problem	
	1 st	Constant – K Band pass filte	
	2 nd	Class test	
15 th	3 rd	Constant – K Band elimination filter	
	4 th	Solve Numerical problem	
	5 th	Solve Numerical problem	

Chittarinjan Perida

HOD

Chittarayan Parida

(A)

DEAN PRINCIPAL